The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 20, 2013
Filed:
Jul. 15, 2011
RU Huang, Beijing, CN;
Jing Zhuge, Beijing, CN;
Jiewen Fan, Beijing, CN;
Yujie Ai, Beijing, CN;
Runsheng Wang, Beijing, CN;
Xin Huang, Beijing, CN;
Ru Huang, Beijing, CN;
Jing Zhuge, Beijing, CN;
Jiewen Fan, Beijing, CN;
Yujie Ai, Beijing, CN;
Runsheng Wang, Beijing, CN;
Xin Huang, Beijing, CN;
Peking University, Beijing, CN;
Abstract
The invention discloses a fabrication method for a surrounding gate silicon nanowire transistor with air as spacers. The method comprises: performing isolation, and depositing a material A which has a higher etch selectivity ratio with respect to Si; performing photolithography to define a Fin hard mask; etching the material A to form the Fin hard mask; performing source and drain implantation; performing photolithography to define a channel region and large source/drain regions; forming the Si Fin and the large source/drains; removing the hard mask of the material A; forming a nanowire; etching the SiOto form a floating nanowire; forming a gate oxide layer; depositing a polysilicon; performing polysilicon injection; performing annealing to activate dopants; etching the polysilicon; depositing SiN; performing photolithography to define a gate pattern; etching the SiN and the polysilicon to form the gate pattern; separating the gate and the source/drain with a space in between filled with air; depositing SiOto form air sidewalls; performing annealing to densify the SiOlayer; using subsequent processes to complete the device fabrication. The invention is compatible with the CMOS process flow. The introduction of the air sidewalls can effectively reduce the parasitic capacitance of the device, and improve the transient response of the device, so that the method is applicable for a logic circuit with high performance.