The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 18, 1996

Filed:

Oct. 13, 1994
Applicant:
Inventors:

Douglas A Pike, Jr, Bend, OR (US);

Dah W Tsang, Bend, OR (US);

James M Katana, Bend, OR (US);

Dumitru Sdrulla, Bend, OR (US);

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ; H01L / ;
U.S. Cl.
CPC ...
257142 ; 257144 ; 257148 ; 257154 ; 257156 ; 257168 ; 257170 ; 257339 ; 257340 ; 257401 ; 257409 ; 257590 ; 257639 ; 257641 ; 257775 ;
Abstract

For IGBT, MCT or like devices, the substrate is formed with P+, N+ and N- layers and PN diffusions to define body and source regions in the N-layer and a MOS-gated channel at the upper surface. The N-layer is sized and doped (.about.10.sup.14 /cm.sup.3) to block reverse bias voltage. The N+ layer is >20 .mu.m thick and doped below .about.10.sup.17 /cm.sup.3 but above the N- doping to enhance output impedance and reduce gain at high V.sub.ce conditions. Or the N+ layer is formed with a thin (.about.5 .mu.m) highly doped (>10.sup.17 /cm.sup.3) layer and a thick (>20 .mu.m) layer of .about.10.sup.16 /cm.sup.3 doping. A platinum dose of 10.sup.13 to 10.sup.16 /cm.sup.3 is ion implanted and diffused into the silicon to effect lifetime control. Gate and source contacts and body and source diffusions have an inter-digitated finger pattern with complementary tapers to minimize current crowding and wide gate buses to minimize signal delay. P+ doping beneath and marginally surrounding the gate pads and main gate bus negates breakdown conditions in widely spaced body regions and convex localities at the source finger end. Wide secondary gate buses parallel to the gate fingers have a P+ doped central stripe and transverse shorting bars spaced along their length. A non-polarizable PECVD passivation film of low phosphorus PSG and nitride or oxynitride or of oxynitride alone is made by controlling ionized gas residence time, silane partial pressure, and oxygen ratio during deposition, to minimize incorporation of Si--H into the film.


Find Patent Forward Citations

Loading…