The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 04, 2002

Filed:

Oct. 08, 1999
Applicant:
Inventors:

Tony P. Chiang, San Jose, CA (US);

Yu D. Cong, Sunnyvale, CA (US);

Peijun Ding, San Jose, CA (US);

Jianming Fu, San Jose, CA (US);

Howard H. Tang, San Jose, CA (US);

Anish Tolia, San Jose, CA (US);

Assignee:

Applied Materials, Inc., Santa Clara, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C23C 1/434 ;
U.S. Cl.
CPC ...
C23C 1/434 ;
Abstract

A DC magnetron sputter reactor for sputtering copper, its method of use, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. Also, a method of coating copper into a narrow and deep via or trench using SIP for a first copper layer. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. The target power for a 200 mm wafer is preferably at least 10 kW; more preferably, at least 18 kW; and most preferably, at least 24 kW. Hole filling with SIP is improved by long-throw sputtering in which the target-to-substrate spacing is at least 50% of substrate diameter, more preferably at least 80%, most preferably at least 140%. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). For very high aspect-ratio holes, a copper seed layer is deposited by chemical vapor deposition (CVD) over the SIP copper nucleation layer, and PVD or ECP completes the hole filling. The copper seed layer may be deposited by a combination of SIP and high-density plasma sputtering. For very narrow holes, the CVD copper layer may fill the hole. Preferably, the plasma is ignited in a cool process in which low power is applied to the target in the presence of a higher pressure of argon working gas. After ignition, the pressure is reduced, and target power is ramped up to a relatively high operational level to sputter deposit the film.


Find Patent Forward Citations

Loading…