The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 25, 2000
Filed:
Nov. 10, 1997
Taiwan Semiconductor Manufacturing Company, Hsin-Chu, TW;
Abstract
A method for forming a silicon nitride/silicon oxide (NO) layer within a microelectronics fabrication, and the microelectronics fabrication having the silicon nitride/silicon oxide (NO) layer formed therein. There is first provided a substrate employed within a microelectronics fabrication. There is then formed over the substrate a first silicon nitride layer through a first deposition method. There is then formed upon the first silicon nitride layer a second silicon nitride layer through a second deposition method. Finally, there is annealed thermally in an oxidizing environment the first silicon nitride layer and the second silicon nitride layer to form therefrom a silicon nitride/silicon oxide (NO) layer. The silicon nitride/silicon oxide (NO) layer may be formed with optimized resistivity properties at a reduced thermal annealing temperature and/or a reduced thermal annealing exposure time in comparison with an otherwise equivalent silicon nitride/silicon oxide (NO) layer formed through thermal annealing a single silicon nitride layer of thickness equivalent to the thickness of the first silicon nitride layer plus the thickness of the second silicon nitride layer. When formed upon a silicon oxide dielectric layer in turn formed upon a first capacitor plate within a capacitor within an integrated circuit, there may be formed employing the silicon nitride/silicon oxide (NO) layer a silicon oxide/silicon nitride/silicon oxide (ONO) capacitive dielectric layer.