The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 28, 1998
Filed:
Nov. 08, 1996
Tue Nguyen, Vancouver, WA (US);
Yoshihide Senzaki, Vancouver, WA (US);
Masato Kobayashi, Vancouver, WA (US);
Lawrence J Charneski, Vancouver, WA (US);
Sheng Teng Hsu, Camas, WA (US);
Sharp Microelectronics Technology, Inc., Camas, WA (US);
Sharp Kabushiki Kaisha, Osaka, JP;
Abstract
A method of blending water vapor with volatile Cu(hfac)TMVS (copper hexafluoroacetylacetonate trimethylvinylsilane) is provided which improves the deposition rate of Cu, without degrading the resistivity of the Cu deposited upon an integrated circuit surface. The method of the present invention uses a relatively small amount of water vapor, approximately 0.3 to 3% of the total pressure of the system in which chemical vapor deposition (CVD) Cu is applied. The method specifies the flow rates of the liquid precursor, carrier gas, and liquid water. The method also specifies the pressures of the vaporized precursor, vaporized precursor blend including carrier gas and water vapor. In addition, the temperatures of the vaporizers, chamber walls, and IC surfaces are disclosed. A Cu precursor blend is also provided comprising vaporized Cu(hfac)TMVS and water vapor. The ratio of water vapor pressure to vaporized precursor is approximately 0.5 to 5%. Further, an IC surface covered with Cu applied with a Cu precursor blend including vaporized Cu(hfac)TMVS and water vapor, with the above mentioned ratio of water vapor pressure to volatile Cu(hfac)TMVS pressure, is provided.