The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 14, 2019
Filed:
May. 06, 2015
University of Florida Research Foundation, Incorporated, Gainesville, FL (US);
Xueli Zhang, Tianjin, CN;
Kaemwich Jantama, Chiang Mai, TH;
Jonathan C. Moore, Encinitas, CA (US);
Laura R. Jarboe, Ames, IA (US);
Keelnatham T. Shanmugam, Gainesville, FL (US);
Lonnie O'Neal Ingram, Gainesville, FL (US);
University of Florida Research Foundation, Incorporated, Gainesville, FL (US);
Abstract
This invention relates to biocatalysts for the efficient production of succinic acid and/or other products from renewable biological feedstocks. The biocatalysts have a very high efficiency for the growth-coupled production of succinic acid and/or other products from carbohydrate feed stocks as a result of both genetic manipulation and metabolic evolution. More specifically, certain biocatalysts of the present invention produce succinic acid at high titers and yields in mineral salts media during simple pH-controlled batch fermentation without the addition of any exogenous genetic material. The genetic manipulations of the present invention are concerned with energy-conserving strategies coupled with the elimination of alternative routes for NADH oxidation other than the routes for succinic acid production. The biocatalysts contain glucose-repressed gluconeogenic phosphoenolpyruvate carboxykinase (pck) derepressed by genetic modifications and a genetically-inactivated phosphotransferase system. In terms of succinic acid production efficiency, the biocatalysts of the present invention are functionally equivalent to succinate producing rumen bacteria such asand, with one difference: that the biocatalysts are able to achieve this high level of succinic acid production in a minimal salt medium with carbohydrate source, as opposed to the requirement for a rich medium for succinic acid production by rumen bacteria.