The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 12, 2009
Filed:
Dec. 28, 2005
Nigel Smith, Hsinchu, TW;
Yi-sha Ku, Hsinchu, TW;
Shih Chun Wang, Taipei, TW;
Chun-hung Ko, Taipei, TW;
Nigel Smith, Hsinchu, TW;
Yi-sha Ku, Hsinchu, TW;
Shih Chun Wang, Taipei, TW;
Chun-hung Ko, Taipei, TW;
Industrial Technology Research Institute, Taipei, TW;
Nanometrics Incorporated, Milpitas, CA (US);
Abstract
A system and method for efficiently and accurately determining grating profiles uses characteristic signature matching in a discrepancy enhanced library generation process. Using light scattering theory, a series of scattering signatures vs. scattering angles or wavelengths are generated based on the designed grating parameters, for example. CD, thickness and Line:Space ratio. This method selects characteristic portions of the signatures wherever their discrepancy exceeds the preset criteria and reforms a characteristic signature library for quick and accurate matching. A rigorous coupled wave theory can be used to generate a diffraction library including a plurality of simulated diffraction spectrums based on a predetermined structural parameter of the grating. The characteristic region of the plurality of simulated diffraction spectrums is determined based on if the root mean square error of the plurality of simulated diffraction spectrums is larger than a noise level of a measuring machine. The diffraction intensity of the measured diffraction spectrum is compared with that of the plurality of simulated diffraction spectrums in the characteristic region to select a match spectrum from these simulated diffraction spectrums, and the structural parameter of the grating is decided based on the match spectrum.