The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 22, 2004

Filed:

Aug. 04, 2000
Applicant:
Inventors:

Fabrice Geiger, Meylan, FR;

Frederic Gaillard, Voiron, FR;

Assignee:

Applied Materials Inc., Santa Clara, CA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L 2/131 ;
U.S. Cl.
CPC ...
H01L 2/131 ;
Abstract

The present invention relates to a method for providing a dielectric film having a low dielectric constant that is particularly useful as an intermetal dielectric layer. The method of the present invention deposits a porous oxide gap fill layer from a process gas of ozone and TEOS. The gap fill layer is deposited over a surface sensitive lining layer (as opposed to a non-surface sensitive layer as is commonly done in the industry) using deposition conditions that maximize the amount of carbon that is incorporated into the gap fill layer and result in a porous silicon oxide film. A typical SACVD ozone/TEOS gap fill layer has a carbon content of about 2-3 atomic percent (at. %). An SACVD ozone/TEOS gap fill layer deposited according to the present, however, has a carbon content of at least 5 at. % and preferably has a carbon content of between about 7-8 at. %. Incorporating such a high carbon content into the porous SACVD gap fill layer helps stabilize the layer so it is not susceptible to moisture absorbtion and outgassing problems as is a lower carbon content porous SACVD ozone/TEOS film. In one embodiment, the method of the present invention increases the carbon content of the SACVD ozone/TEOS layer by depositing the layer at a temperature of less than 400° C. and deposits a porous film over the surface sensitive layer by using a relatively high ozone to TEOS ratio. Silicon oxide films deposited according to the present invention have a dielectric constant of 3.2 and below and exhibit good film stability. Such films are particularly useful in sub-0.2 micron IMD applications.


Find Patent Forward Citations

Loading…