The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 06, 2003

Filed:

Jul. 28, 2000
Applicant:
Inventors:

Garry B. Takle, New York, NY (US);

Allan R. Goldberg, New York, NY (US);

Shaji T. George, New York, NY (US);

Assignee:

Yale University, New Haven, CT (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C07H 2/104 ; C12N 1/570 ; C12N 1/500 ;
U.S. Cl.
CPC ...
C07H 2/104 ; C12N 1/570 ; C12N 1/500 ;
Abstract

Disclosed are a method and compositions for delivering nucleic acids to bacterial cells. The method does not require manipulation of the bacteria and is therefore particularly suited to delivery of nucleic acids to bacteria in natural environments, including inside animals bodies. The method generally involves conjugating the nucleic acid to be delivered with a cationic porphyrin and bringing the conjugate and the target bacterial cells into contact. Both the porphyrin and conjugated nucleic acid are taken up by the bacterial cells and the nucleic acid can then have a biological effect on the cells. Specifically disclosed is a method for converting drug-resistant bacterial cells to drug-sensitive cells by delivery of external guide sequences to the cells which then promote cleavage of RNA molecules involved in conferring the drug-resistant phenotype on the cells. The drug-resistant phenotype of the cells is thus converted to a drug-sensitive phenotype. The drug-sensitive cells are then susceptible to drug therapy. Also disclosed is a method and compositions for killing eukaryotic pathogens or converting drug-resistant eukaryotic cells to drug-sensitive cells. The method involves the delivery of external guide sequences, ribozymes, or vectors encoding external guide sequences or ribozymes, to eukaryotic cells. Preferred target eukaryotic cells for the disclosed method include algae, protozoa, fungi, slime mold, and cells of helminths.


Find Patent Forward Citations

Loading…