The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 15, 2002
Filed:
Mar. 31, 1999
Fernando González, Boise, ID (US);
Micron Technology, Inc., Boise, ID (US);
Abstract
The present invention relates to the formation of multiple gettering structures within a semiconductive substrate by ion implantation through recesses in the semiconductive substrate. A preferred embodiment of the present invention includes forming the recesses by using a reactive anisotropic etching medium, followed by implanting a gettering material. The gettering material is implanted by changing the gettering material for the reactive anisotropic etching medium. An advantage of the method of the present invention is that gettering structures are formed without the cost of an extra masking procedure and without the expense of MeV implantation equipment and procedures. As a result, metallic contaminants will not move as freely through the semiconductive substrate in the region of an active area proximal to the gettering structures. Following implantation and formation of the gettering structures, thermal processing may be carried out in order to induce lateral spread or widening of each of the gettering structures. In some embodiments, it may be desirable that each gettering structure substantially contact an adjacent gettering structure, which may be accomplished by directional ion implantation. In another embodiment of the present invention, a dual implantation is carried out. The shallow implantation migrates during thermal processing to fill crystal originated particles or pits (COPs) within the semiconductive substrate.