The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 11, 2002

Filed:

Jul. 27, 2001
Applicant:
Inventors:

Uwe Leinhos, Göttingen, DE;

Jürgen Kleinschmidt, Weissanfels, DE;

Wolfgang Zschocke, Göttingen, DE;

Uwe Stamm, Göttingen, DE;

Assignee:

Lambda Physik AG, Goettingen, DE;

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01S 3/13 ; H01S 3/22 ;
U.S. Cl.
CPC ...
H01S 3/13 ; H01S 3/22 ;
Abstract

A laser is provided having a gain medium including a laser gas and a photoabsorbing species. The photoabsorbing species has at least one photoabsorption line within an output emission spectrum of the laser. When the laser is an ArF-excimer laser, the photoabsorbing species is preferably either atomic carbon or molecular oxygen, which are formed after carbon- or oxygen-containing molecules introduced into the gain medium with the laser gas interact within the gain medium. An absolute wavelength of a narrowed emission of the laser can be calibrated when a narrowed output emission of the laser is tuned through at least one photoabsorption line of the photo-absorbing species. Preferably, a processor communicates with a detector and a wavelength selection unit, as well as a power supply when output beam energy is held constant, to automatically perform the calibration. Also preferably, one of tetrafluorocarbon, trifluoromethane, difluoromethane, fluoromethane and methane molecules are selected as the carbon-containing molecules and/or one of carbon dioxide, carbon monoxide or oxygen are selected as the oxygen-containing molecules. When carbon is selected, a photoabsorption line of atomic carbon at 193.0905 nm is compared with the spectral position of the narrowed emission of the laser to determine the absolute wavelength. When oxygen is selected, a photoabsorption line of molecular oxygen at one or more of 193.114 nm, 193.292 nm or 193.493 nm is compared with the spectral position of the narrowed emission. The absolute wavelength is calibrated within an accuracy range of around ±0.1 pm.


Find Patent Forward Citations

Loading…