The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 21, 2000
Filed:
Jul. 20, 1999
Wayne Tan, Taipei, TW;
Kun-Chi Lin, Hsin-Chu, TW;
United Microelectronics Corp., Hsin-Chu, TW;
Abstract
An improved method of fabricating a node capacitor for a dynamic random access memory (DRAM) process is disclosed. The process includes depositing a first interpoly dielectric (IPD1) layer over a substrate, patterning a first photoresist layer on the first interpoly dielectric layer, thereby defining a trench. A trench is etched in the first interpoly dielectric layer using the first photoresist layer as a mask. A first polysilicon layer is deposited on the first interpoly dielectric layer. The first polysilicon layer is etched to expose the first interpoly dielectric layer, then forming a landing pad over the substrate. In order to a polycide layer and a second interpoly dielectric (IPD2) layer are deposited, patterning a second photoresist layer, thereby defining a bit line structure. A bit line structure is formed, then depositing a spacer on the bit line structure. A second polysilicon layer is deposited, patterning a third photoresist layer, thereby defining a bottom electrode. A bottom electrode is formed, then depositing a thin NO (silicon nitride-silicon oxide) dielectric layer on the bottom electrode. An addition step is performed before forming the thin NO dielectric layer on the bottom electrode. In this additional step, a hemispherical grain (HSG) polysilicon layer is formed on the second polysilicon layer. This advantage is used to the hemispherical grain polysilicon layer increasing the area of a node capacitor. A third polysilicon layer is deposited completely covering the thin NO dielectric layer to form a top electrode.