The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 25, 2000
Filed:
Aug. 20, 1997
Thomas J Dunn, Mohegan Lake, NY (US);
Nestor O Farmiga, Clifton, NJ (US);
Marc Zemel, Dobbs Ferry, NY (US);
Carl Weisbecker, Mount Vernon, NY (US);
Kanti Jain, Briarcliff Manor, NY (US);
Anvik Corporation, Hawthorne, NY (US);
Abstract
In the manufacturing of flexible, large-area electronic modules such as flat-panel displays (FPDs), the high cost and low yields of currently available patterning equipment represent a significant barrier to cost-effective production. This invention provides a projection imaging system that can pattern very large, flexible substrates at very high exposure speeds with almost any desired image resolution. The master pattern to be imprinted on the substrate is contained on a mask which, similar to the substrate, is made of a flexible material The mask and substrate are scanned by rollers through the object and the image field, respectively, of a 1:1 projection lens. All of the rollers are driven by identical drive systems linked to a common motor; therefore, the scanning of the mask and substrate is perfectly synchronized. Both the mask and the substrate, along with their rollers, are mounted on a linear translation stage. The translation stage scans continuously at a velocity which is chosen such that, for every complete rotation of the mask and substrate, the linear stage will move by the effective scan width. The entire substrate is patterned using one continuous helical scan. Suitable overlap between complementary intensity profiles produced by a hexagonal illumination configuration ensures seamless joining of the scans. The use of rollers significantly enhances the throughput and effectively reduces the payload and footprint of the scanning stage leading to substantial system cost savings.