The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 04, 1999

Filed:

Mar. 25, 1997
Applicant:
Inventors:

Naoki Nagai, Annaka, JP;

Koji Mizuishi, Annaka, JP;

Michiaki Oda, Annaka, JP;

Assignee:
Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C30B / ;
U.S. Cl.
CPC ...
117 33 ; 117 18 ; 117213 ; 117214 ;
Abstract

A silicon monocrystal is manufactured according to the continuously charged Czochralski method in which a double crucible is used which includes an outer crucible and an inner crucible which communicate with each other through pores. A dopant is charged to the silicon melt stored in the double crucible before commencing pulling of a silicon monocrystal such that the ratio of the dopant concentration of the silicon melt stored in the outer crucible to the dopant concentration of the silicon melt stored in the inner crucible becomes greater than an effective segregation coefficient of the dopant. The silicon monocrystal is then pulled while silicon material is charged to the silicon melt within the outer crucible, during which the dopant concentration ratio becomes equal to the effective segregation coefficient and then becomes smaller than the effective segregation coefficient. When the dopant concentration ratio becomes smaller than the effective segregation coefficient, the dopant is charged to the silicon melt stored in the outer crucible. The above operation is repeated, so that the specific resistance of the silicon monocrystal pulled from the double crucible can be controlled within a desired range using commonly-employed dopant.


Find Patent Forward Citations

Loading…