The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 03, 1994

Filed:

Oct. 22, 1993
Applicant:
Inventors:

Gary Hong, Hsin-chu, TW;

Cheng H Huang, Hsin-chu, TW;

Hong-Tsz Pan, Chang-hua City, TW;

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
437 70 ; 437 69 ; 437 24 ; 437 25 ; 437 28 ; 437 61 ;
Abstract

A new method of local oxidation using a nitrogen implant through a spin-on-glass film is described. A thin silicon oxide layer is formed over the surface of a silicon substrate. A layer of silicon nitride is deposited overlying the silicon oxide layer. The silicon oxide and silicon nitride layers are patterned to provide openings of various sizes exposing portions of the silicon substrate to be oxidized. Ions are selectively implanted into the silicon substrate through the openings. The patterned surface of the substrate is covered with a spin-on-glass material. The spin-on-glass material is thicker within the smaller openings and thinner within the larger openings. The spin-on-glass material is soft-baked. Nitrogen ions are selectively implanted into the silicon substrate through the spin-on-glass material within the openings wherein fewer nitrogen ions are implanted through the thicker spin-on-glass material within the smaller openings and more nitrogen ions are implanted through the thinner spin-on-glass material within the larger openings. The spin-on-glass material is removed. Field oxide regions are grown within the openings wherein the rate of field oxidation is inhibited most within the openings through which a larger concentration of nitrogen ions were implanted and inhibited to a lesser extent in openings through which smaller concentrations of nitrogen ions were implanted resulting in nearly equal thicknesses of field oxide regions in all openings of various sizes.


Find Patent Forward Citations

Loading…