The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 29, 1989
Filed:
Aug. 06, 1986
Gary W Sherwin, Yukon, PA (US);
Albert L Schmidt, Murrysville, PA (US);
Lewis F Hanes, Pittsburgh, PA (US);
Westinghouse Electric Corp., Pittsburgh, PA (US);
Abstract
An automated visual testing system is disclosed which presents an alternating steady state visual stimulus to a patient through an optical system that modifies the stimulus image. As the image changes, the patient produces evoked potentials that change. The evoked potentials are detected by a product detector which produces the amplitude of the evoked potentials. The amplitude is monitored through an analog to digital converter by a supervisor computer. The supervisor computer produces patient response curves from which it diagnoses visual system malfunction and/or prescribes correction. A control processor controls a stimulus generator to produce the image and an optical system, that includes polarizers, an astigmatism test slit or a cylindrical lense, a zoom lense system and a variable focal length test lense, transmits the image to the patient. The steady state visual potential stimulus generator is a device by which a rapidly complementing or flashing pattern can be presented to the patient. The generator allows the contrast of the image to be varied without varying luminance and allows operation in a true bicolor and multicolor mode. The product detector detects the level of the steady state evoked potential signals even in the presence of substantial background noise and extraneous electroencephalographic signals. These detectors can be used to monitor the evoked potential produced by visual, all or somatic steady state stimuli. The components described above can be used to produce a system that can determine to which of several different displays an observer is paying attention by providing images that blink at different frequencies and product detectors for each of the stimulus frequencies. The product detector producing the highest output indicates the display upon which the observer is focused.