The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 25, 2025
Filed:
Mar. 10, 2021
Shin-etsu Handotai Co., Ltd., Tokyo, JP;
Tsuyoshi Ohtsuki, Annaka, JP;
Tatsuo Abe, Shirakawa, JP;
SHIN-ETSU HANDOTAI CO., LTD., Tokyo, JP;
Abstract
The present invention is a method for forming a thermal oxide film on a semiconductor substrate, including: a correlation acquisition step of providing a plurality of semiconductor substrates each having a chemical oxide film having a different constitution formed by cleaning, performing a thermal oxidization treatment under identical thermal oxidization treatment conditions to form a thermal oxide film, and determining a correlation between the constitution of the chemical oxide film and a thickness of the thermal oxide film in advance; a cleaning condition determination step of determining the constitution of the chemical oxide film based on the correlation obtained in the correlation acquisition step so that a thickness of a thermal oxide film to be formed on a semiconductor substrate is a predetermined thickness, and determining cleaning conditions for forming a chemical oxide film having the determined constitution of the chemical oxide film; a substrate cleaning step of cleaning the semiconductor substrate under the determined cleaning conditions; and a thermal oxide film formation step of performing a thermal oxidization treatment on the cleaned semiconductor substrate under conditions identical to the thermal oxidization treatment conditions in the correlation acquisition step to form a thermal oxide film on a surface of the semiconductor substrate. Consequently, a thermal oxide film is formed with the target film thickness with excellent reproducibility.