The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 20, 2021
Filed:
Mar. 01, 2019
University of Notre Dame Du Lac, South Bend, IN (US);
Steven Marczak, Notre Dame, IN (US);
Zeinab Ramshani, Notre Dame, IN (US);
Reginald Hill, Granger, IN (US);
David B. Go, Granger, IN (US);
Hsueh-Chia Chang, Granger, IN (US);
Satyajyoti Senapati, Notre Dame, IN (US);
University of Notre Dame du Lac, South Bend, IN (US);
Abstract
Exosomes carry microRNA biomarkers, occur in higher abundance in cancerous patients than in healthy ones, and because they are present in most biofluids, including blood and urine, can be obtained non-invasively. Standard laboratory techniques to isolate exosomes are expensive, time-consuming, provide poor purity, and recover on the order of 25% of the available exosomes. We present a new microfluidic technique to simultaneously isolate exosomes and preconcentrate them by electrophoresis using a high transverse local electric field generated by ion-depleting ion-selective membrane. We use pressure-driven flow to deliver an exosome sample to a microfluidic chip such that the transverse electric field forces them out of the cross flow and into an agarose gel which filters out unwanted cellular debris while the ion-selective membrane concentrates the exosomes through an enrichment effect. We efficiently isolated exosomes from 1×PBS buffer, cell culture media and blood serum. Using flow rates from 150 μL/hr to 200 μL/hr and field strengths of 100 V/cm, we consistently captured between 60% to 80% of exosomes from buffer, cell culture media, and blood serum as confirmed by both fluorescence spectroscopy and nanoparticle tracking analysis. Our microfluidic chip maintained this recovery rate for more than twenty minutes with a concentration factor of 15 for ten minutes of isolation.