The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 11, 2020
Filed:
Feb. 05, 2018
Wisconsin Alumni Research Foundation, Madison, WI (US);
Northwestern University, Evanston, IL (US);
Samuel H. Gellman, Madison, WI (US);
Shannon S. Stahl, Madison, WI (US);
Brendan P. Mowery, San Marcos, CA (US);
Annelise Barron, Palo Alto, CA (US);
Michelle Dohm, Palos Park, IL (US);
WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US);
NORTHWESTERN UNIVERSITY, Evanston, IL (US);
Abstract
Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Presented herein an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of β-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers affords further improvements by reducing the percent surface area compression to reach low minimum surface tension.