The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Oct. 17, 2017

Filed:

Dec. 16, 2013
Applicants:

Xuefei Guan, Princeton, NJ (US);

Jingdan Zhang, Bellevue, WA (US);

Shaohua Kevin Zhou, Plainsboro, NJ (US);

Kai Kadau, Clover, SC (US);

Yan Guo, Orlando, FL (US);

El Mahjoub Rasselkorde, Monroeville, PA (US);

Waheed A. Abbasi, Murrysville, PA (US);

Chin-sheng Lee, Winter Springs, FL (US);

Ashley L. Lewis, Oviedo, FL (US);

Steve H. Radke, Orlando, FL (US);

Inventors:

Xuefei Guan, Princeton, NJ (US);

Jingdan Zhang, Bellevue, WA (US);

Shaohua Kevin Zhou, Plainsboro, NJ (US);

Kai Kadau, Clover, SC (US);

Yan Guo, Orlando, FL (US);

El Mahjoub Rasselkorde, Monroeville, PA (US);

Waheed A. Abbasi, Murrysville, PA (US);

Chin-Sheng Lee, Winter Springs, FL (US);

Ashley L. Lewis, Oviedo, FL (US);

Steve H. Radke, Orlando, FL (US);

Assignee:

Siemens Energy, Inc., Orlando, FL (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G06N 7/00 (2006.01); G06F 17/50 (2006.01); G01N 29/44 (2006.01);
U.S. Cl.
CPC ...
G06N 7/005 (2013.01); G01N 29/4472 (2013.01); G06F 17/5009 (2013.01); G01N 2203/0066 (2013.01); G01N 2203/0073 (2013.01); G01N 2203/0214 (2013.01); G01N 2291/0258 (2013.01);
Abstract

A method for probabilistic fatigue life prediction using nondestructive testing data considering uncertainties from nondestructive examination (NDE) data and fatigue model parameters. The method utilizes uncertainty quantification models for detection, sizing, fatigue model parameters and inputs. A probability of detection model is developed based on a log-linear model coupling an actual flaw size with a nondestructive examination (NDE) reported size. A distribution of the actual flaw size is derived for both NDE data without flaw indications and NDE data with flaw indications by using probabilistic modeling and Bayes theorem. A turbine rotor example with real world NDE inspection data is presented to demonstrate the overall methodology.


Find Patent Forward Citations

Loading…