The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 07, 2015
Filed:
Sep. 06, 2010
Yoshinori Ejiri, Chikusei, JP;
Kiyoshi Hasegawa, Chikusei, JP;
Takehisa Sakurai, Chikusei, JP;
Yoshiaki Tsubomatsu, Chikusei, JP;
Yoshinori Ejiri, Chikusei, JP;
Kiyoshi Hasegawa, Chikusei, JP;
Takehisa Sakurai, Chikusei, JP;
Yoshiaki Tsubomatsu, Chikusei, JP;
Hitachi Chemical Company, Ltd., Tokyo, JP;
Abstract
It is an object of the invention to provide a method for producing a substrate for mounting a semiconductor chip, that can reduce bridging and allows excellent wire bondability and solder connection reliability to be obtained, even when forming fine-pitch wirings. The method for producing a substrate for mounting a semiconductor chip according to the invention comprises a resist-forming step in which a resist is formed on the first copper layer of a stack comprising an inner board with an inner layer circuit on the surface and a first copper layer formed on the inner board separated by an insulating layer at the sections other than those that are to constitute a conductor circuit, a conductor circuit-forming step in which a second copper layer is formed by electrolytic copper plating on the first copper layer to obtain a conductor circuit, a nickel layer-forming step in which a nickel layer is formed by electrolytic nickel plating on at least part of the conductor circuit, a resist removal step in which the resist is removed, an etching step in which the first copper layer is removed by etching, and a gold layer-forming step in which a gold layer is formed by electroless gold plating on at least part of the conductor circuit.