The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 27, 2010
Filed:
Dec. 17, 2008
Artur Darbinyan, Santa Clara, CA (US);
Luu Nguyen, San Jose, CA (US);
Anindya Poddar, Sunnyvale, CA (US);
Artur Darbinyan, Santa Clara, CA (US);
Luu Nguyen, San Jose, CA (US);
Anindya Poddar, Sunnyvale, CA (US);
National Semiconductor Corporation, Santa Clara, CA (US);
Abstract
Optoelectronic packages and wafer level techniques for forming optoelectronic packages are described. In accordance with one apparatus aspect of the invention, a pair of substrates are bonded together to form an optical coupler. A first one of the substrates has a recess that faces the second substrate to at least in part define a channel suitable for receiving an optical transmission medium. A photonic device is mounted on a mounting surface of the second substrate that is opposite its bonded surface. The photonic device faces the reflective surface and an optical path is formed between the channel and the photonic element that both reflects off of the reflective surface and passes through the second substrate. In some embodiments an integrated circuit device and/or solder bumps are also attached to the mounting surface and the second substrate has conductive traces thereon that electrically couple the various electrical components as appropriate (e.g., the photonic device, the integrated circuit device, the solder bumps and/or other components). The substrates may be formed from a wide variety of materials including, glass, plastic and silicon. In some embodiments, at least the second substrate is formed from an optically transparent material and the optical path passes directly though the optically transparent material. In a method aspect of the invention, a variety of wafer level methods for forming such devices are described.