The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jan. 19, 2010

Filed:

Jun. 17, 2005
Applicants:

Kyoungsub Shin, Walnut Creek, CA (US);

Tsu-jae King, Fremont, CA (US);

Inventors:

Kyoungsub Shin, Walnut Creek, CA (US);

Tsu-Jae King, Fremont, CA (US);

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L 27/092 (2006.01); H01L 21/336 (2006.01);
U.S. Cl.
CPC ...
Abstract

Performance of a complementary metal-oxide-semiconductor (CMOS) device having n-channel MOS transistors and p-channel MOS transistors is enhanced by providing a single capping layer overlying the MOS transistors with the single capping layer inducing stress in the transistor channel regions to enhance carrier mobility. The n-channel transistor is preferably fabricated in silicon having a (100) crystalline channel surface orientation, and the p-channel transistor is preferably fabricated in silicon having a (110) channel surface crystalline orientation. A tensile stress in the single capping layer induces tensile stress in the channel of the (100) n-channel transistor thereby enhancing the mobility of electrons while tensile stress in the single capping layer induces compressive stress in the channel of the (110) p-channel transistor thereby enhancing the mobility of holes. Alternatively, the n-channel transistor is fabricated in silicon having a (110) crystalline channel surface orientation, and the p-channel transistor is fabricated in silicon having a (100) channel surface crystalline orientation. A compressive stress in the single capping layer induces tensile stress in the channel of the (110) n-channel transistor thereby enhancing the mobility of electrons while compressive stress in the single capping layer induces compressive stress in the channel of the (100) p-channel transistor thereby enhancing the mobility of holes.


Find Patent Forward Citations

Loading…