The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 01, 2008
Filed:
Nov. 05, 2003
Brett J. Campbell, Hatfield, PA (US);
Patrick J. Carberry, Laury's Station, PA (US);
Jason P. Goodelle, Allentown, PA (US);
Michael Francis Quinn, Allentown, PA (US);
Brett J. Campbell, Hatfield, PA (US);
Patrick J. Carberry, Laury's Station, PA (US);
Jason P. Goodelle, Allentown, PA (US);
Michael Francis Quinn, Allentown, PA (US);
LSI Corporation, Milpitas, CA (US);
Abstract
A method of making a packaged electrical device comprises the steps of (a) connecting one end of a wire to a first point (e.g., a first electrical node) in the package, and (b) connecting the other end of the wire to a second point (e.g., a second electrical node) in the package, characterized by (c) causing energy from an external source to heat at least one predetermined segment of the wire to a temperature that is below its melting point (MP) but not below its recrystallization temperature (RCT), and (d) cooling the heated segment to a temperature below its RCT [e.g., to room temperature (RT)], thereby to increase the stiffness modulus of the segment. In one embodiment, the external source is a laser whose optical output is absorbed by the segment. In another embodiment, the heated segment is rapidly cooled (i.e., quenched) to RT. In an embodiment suitable for use with IC chips that have a multiplicity of side-by-side wirebonds, apparatus for heating and cooling the segments and/or the IC chips is located on an x-y table, which allows the wirebonds and the apparatus to be scanned sequentially relative to one another. By increasing the stiffness of at least one segment of each wire, our process increases the physical stability of all of the wires and thereby enables finer wires to be utilized in the fabrication of high-density I/O packaged devices.