The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 14, 2007
Filed:
Feb. 07, 2006
Heeseog Jeon, Hwaseong-si, KR;
Seung-beom Yoon, Suwon-si, KR;
Yong-tae Kim, Yongin-si, KR;
Yong-suk Choi, Seoul, KR;
Heeseog Jeon, Hwaseong-si, KR;
Seung-beom Yoon, Suwon-si, KR;
Yong-tae Kim, Yongin-si, KR;
Yong-suk Choi, Seoul, KR;
Abstract
A split gate type nonvolatile semiconductor memory device and a method of fabricating a split gate type nonvolatile semiconductor memory device are provided. A gate insulating layer and a floating-gate conductive layer are formed on a semiconductor substrate. A mask layer pattern is formed on the floating-gate conductive layer to define a first opening extending in a first direction. First sacrificial spacers having a predetermined width are formed on both sidewalls corresponding to the mask layer pattern. An inter-gate insulating layer is formed on the floating-gate conductive layer. The first sacrificial spacers are removed, and the floating-gate conductive layer is etched until the gate insulating layer is exposed. A tunneling insulating layer is formed on an exposed portion of the floating-gate conductive layer. A control-gate conductive layer is formed on a surface of the semiconductor substrate. Second sacrificial spacers having predetermined widths are formed on the control-gate conductive layer. A split control gate is formed in the first opening, by etching the exposed control-gate conductive layer. The remaining mask layer pattern and inter-gate insulating layer are etched until the floating-gate conductive layer is exposed. The exposed floating-gate conductive layer is etched to form a split floating gate in the first opening.