The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 03, 2004
Filed:
May. 21, 2002
Carl A. Zanoni, Middlefield, CT (US);
Zygo Corporation, Middlefield, CT (US);
Abstract
Interferometric method(s) and apparatus for accurately measuring aspherical surfaces and transmitted wavefronts, particularly of the type having relatively large diameters and departure employed in lithographic applications used in the fabrication of integrated circuits and the like. An interferometer, preferably of the Fizeau type, is provided with at least one aspherical reference surface that is positioned adjacent the test optic. The test optic can be either rotationally or non-rotationally symmetric, a reflecting aspherical test surface, or a refracting system that is illuminated by an aspherical wavefront or produces a transmitted aspherical wavefront. In any case, the departure of the test optic from its intended performance is ultimately determined. The aspherical reference surface is illuminated by an aspherical wavefront provided by upstream optics structured so that the incident aspherical wavefront propagates normal to the aspherical reference surface across its entire surface. The illuminating aspherical wavefront is partially reflected and partially transmitted by the reference surface to provide an aspherical measurement wavefront that is incident to the test optic and has a shape nominally the same as that of the test surface in the reflective case or of the design transmitted wavefront in the refractive case. The aspherical test surface reflects the incident aspherical wavefront and it combines with the reference aspherical wavefront to provide an interferogram containing phase information indicative of the shape of the wavefront generated by the test optic. The interferogram is imaged onto a preferably two dimensional photodetection system that provides an output signal that is analyzed to extract the relevant phase information and convert it to numerical and display form. Phase shifting interferometric techniques are preferably used in the performance of the analysis along with alignment apparatus and procedures for assuring accurate measurement of the test optic.