The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 04, 2003
Filed:
Mar. 05, 2002
Peter de Groot, Middletown, CT (US);
Henry A. Hill, Tucson, AZ (US);
Frank C. Demarest, Middletown, CT (US);
Zygo Corporation, Middlefield, CT (US);
Abstract
Apparatus and methods particularly suitable for use in electro-optical metrology and other applications to measure and monitor the refractive index of a gas in a measurement path and/or the change in optical path length of the measurement path due to the gas while the refractive index of the gas may be fluctuating due to turbulence or the like and/or the physical length of the measuring path may be changing. More specifically, the invention employs electronic frequency processing to provide measurements of dispersion of the refractive index, the dispersion being substantially proportional to the density of the gas, and/or measurements of dispersion of the optical path length, the dispersion of the optical path length being related to the dispersion of the refractive index and the physical length of the measurement path. The refractive index of the gas and/or the optical path length effects of the gas are subsequently computed from the measured dispersion of the refractive index and/or the measured dispersion of the optical path length, respectively. The information generated by the inventive apparatus is particularly suitable for use in interferometric distance measuring instruments (DMI) to compensate for errors related to refractive index of gas in a measurement path brought about by environmental effects and turbulence induced by rapid stage slew rates. In preferred embodiments, differential plane mirror interferometer architectures are utilized, the operating wavelengths are approximately harmonically related and may be monitored and/or controlled to meet precision requirements, heterodyne and superheterodyne processing are beneficially used, and phase redundancy is resolved.