The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Nov. 19, 2002

Filed:

May. 22, 2001
Applicant:
Inventors:

Randy B. Osborne, Beaverton, OR (US);

Ingmar Bitter, Stony Brook, NY (US);

Hanspeter Pfister, Somerville, MA (US);

James Knittel, Groton, MA (US);

Hugh C. Lauer, Concord, MA (US);

Assignee:

TeraRecon, Inc., San Mateo, CA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G06T 1/500 ;
U.S. Cl.
CPC ...
G06T 1/500 ;
Abstract

A volume rendering processor renders a two-dimensional image from a volume data set of voxels constituting a three-dimensional representation of an object. Voxel memory interface logic retrieves the voxels from a voxel memory in a scanned order with respect to X, Y and Z coordinate axes, the Z axis being the axis most nearly parallel to a predefined viewing direction. The set of voxels having equal Z coordinate values are referred to as a “slice” of voxels. Interpolation logic calculates a sequence of samples from the retrieved voxels such that (i) each sample lies along a corresponding imaginary ray extending through the object parallel to the viewing direction, (ii) each sample results from interpolating the eight voxels surrounding the sample in the XYZ coordinate system. “Supersampling” in the Z dimension is performed such that the number of samples calculated for each ray is greater than the number of slices of voxels in the volume data set. Gradient calculation logic calculates for each sample respective gradients in the X, Y and Z directions for use by classification and illumination logic. The X and Y gradients are calculated from the samples emitted by the interpolation logic, and Z gradients are calculated by (i) calculating Z gradients at the voxel positions from voxel values retrieved from memory, and (ii) interpolating the voxel Z gradients to arrive at the Z gradients at the sample positions.


Find Patent Forward Citations

Loading…