The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 19, 2002
Filed:
Feb. 13, 2001
Peter James Maloney, New Hudson, MI (US);
Delphi Technologies, Inc., Troy, MI (US);
Abstract
An improved method of assessing the frequency response of an in vehicle exhaust gas air/fuel ratio sensor by measuring and analyzing the sensor response to a predetermined perturbation of the fuel delivered to the engine. In a first test mode that provides both quantitative and qualitative assessments, the perturbation is achieved by applying fixed biases to the fuel pulse widths of individual engine cylinders to create a rich/lean perturbation in the exhaust gas, and by adjusting the engine throttle to gradually vary the engine speed over a test interval so that the rich/lean perturbation correspondingly varies in frequency. Since the biases are fixed, intake port wall-wetting effects are minimized. In a second test mode that provides a qualitative assessment, the perturbation is achieved by applying an alternating fuel bias multiplier to every engine cylinder, with the engine operating at a fixed speed and load setting that is of interest for diagnostic purposes. In each case, the output of the air/fuel sensor is band-pass filtered at the frequency of the fuel bias pattern to identify the sensor response, and the response is rectified and low-pass filtered to produce a D.C. measure of the response amplitude to generate a pass/fail indication. In the first test mode, the output of the air/fuel sensor can also be sampled and incrementally processed with a Fast-Fourier-Transform (FFT) technique to identify the response amplitude of the sensor at each of a plurality of frequencies, forming the basis of a Bode plot.