The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 19, 2002
Filed:
Sep. 06, 2000
Seiki Ogura, Wappingers Falls, NY (US);
Tomoko Ogura, Wappingers Falls, NY (US);
Halo LSI Device & Design Technology, Inc., Wappingers Falls, NY (US);
Abstract
An fast program, ultra-high density, dual-bit, multi-level flash memory process, which can be applied to a ballistic step split gate side wall transistor, or to a ballistic planar split gate side wall transistor, which enables program operation by low voltage requirement on the floating gate during program is described. Two side wall floating gates are paired with a single word line select gate, and word lines are arranged to be perpendicular both the bit lines and control gate lines. Two adjacent memory cells on the same word line do not require an isolation region. Also, the isolation region between adjacent memory cells sharing the same bitline is defined by the minimum lithography feature, utilizing a self align fill technique. Adjacent memory cells on the same word line share bitline diffusion as well as a third poly control gate. Control gates allow program and read access to the individual floating gate. In addition to the dual-bit nature of the cell, density can be even further improved by multi-level storage. In one embodiment, the dual multi-level structure is applied to the ballistic step split gate side wall transistor. In a second embodiment, the dual multi-level structure is applied to the ballistic planar split gate side wall transistor. Both types of ballistic transistors provide fast, low voltage programming. The control gates are used to override or suppress the various threshold voltages on associated floating gates, in order to program to and read from individual floating gates. The targets for this non-volatile memory array are to provide the capabilities of high speed, low voltage programming (band width) and high density storage.