The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Aug. 21, 2001

Filed:

May. 28, 1999
Applicant:
Inventors:

Hiroshi Takeno, Annaka, JP;

Yoshinori Hayamizu, Annaka, JP;

Assignee:
Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01L 2/120 ;
U.S. Cl.
CPC ...
H01L 2/120 ;
Abstract

Provided is a production method for a silicon epitaxial wafer having an internal gettering (IG) capability at a level equal to that of a CZ silicon mirror-finished wafer. In the production method for a silicon epitaxial wafer in which silicon single crystal is epitaxially grown on a silicon wafer; a heat treatment of the silicon wafer is performed at a temperature within ±50° C. of a holding temperature for the first stage heat treatment which is to be firstly effected as a heat treatment in the device fabrication process after the epitaxial growth process for a time period equal to or more than a time period in which a precipitate nucleus from interstitial oxygen in the silicon wafer can grow to a size which survives through the epitaxial growth process, prior to the epitaxial growth process, and thereafter, the epitaxial growth is effected; or a heat treatment of the silicon wafer is performed being kept at a temperature within ±50° C. of a holding temperature for the first stage heat treatment which is to be at first effected as a heat treatment in the device fabrication process after the epitaxial growth process for a time period equal to or more than a time period in which a precipitate nucleus from interstitial oxygen in the silicon wafer can grow to a size a nucleus of which survives through the epitaxial growth process, in the course of raising temperature after start of the epitaxial growth process, and thereafter, a temperature is raised to an epitaxial growth temperature to perform the epitaxial growth.


Find Patent Forward Citations

Loading…