The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 17, 2001
Filed:
Aug. 01, 1997
Reinhold Ludwig, Worcester, MA (US);
John A. McNeill, Stow, MA (US);
Jennifer A. Stander, Boylston, MA (US);
Worcester Polytechnic Institute, Worcester, MA (US);
Abstract
An innovative multi-dimensional, low frequency, impedance measurement probe array, measurement system, and method are disclosed for detecting flaws in conductive articles. The device and method provide for contacting a conductive article with an multi-probe array of current and voltage probes, injecting current sequentially through a plurality of current probe pairs and measuring absolute or relative voltages with a plurality of voltage probes and voltage probe pairs across the surface of an article for each current flow condition. The device and method further provide for constructing a voltage profile across the surface of an article where disruptions in the voltage profile enable detection of the presence, location and orientation of flaws for flaw sizes as low as 20 um. The innovative probe array and method provide for rapidly detecting cracks, inclusions, defects and other flaws in conductive articles and can be adapted and deployed as either a two-dimensional, planar array or three-dimensional shaped array for a variety of sample configurations and surfaces. By utilizing a plurality of current and voltage probes in an array format, the device and method overcomes existing limitations of conventional linear probes and traditional methods by enabling flaw detection over larger areas in a single probe placement while achieving a high degree of sensitivity and precision in determining flaw location and orientation.