The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 10, 2001
Filed:
Oct. 16, 1998
Martin Bähr, Haundorf-Gräfensteinberg, DE;
Erik Laux, Erlensee, DE;
Balzers und Leybold Deutschland Holding AG, Hanau, DE;
Abstract
A method is disclosed for the operation of a high-power electron beam for the vaporization of materials in a target. With this method, static and dynamic deflection errors are corrected. First, the static and dynamic deflection errors are ascertained by means of a teach-in process for concrete spatial coordinates and concrete frequencies of the deflection currents and stored in a memory. For the later operation, this stored data is used in such a way that input geometric data for the incidence points of the electron beam is automatically recalculated into corrected current values which bring about the exact incidence onto the input points. A corresponding procedure takes place with the input of frequencies for the deflection current. The input frequencies are automatically corrected in terms of frequency and amplitude in order to eliminate the frequency-dependent attenuation effects. Both in the correction of the static and in the correction of the dynamic deflection errors it is guaranteed by suitable interpolation methods that even the spatial coordinates and frequencies not considered in the teach-in process are taken into account. Finally, a method is specified with which it is possible by mere specification of a power distribution on a crucible surface to control the electron beam such that the specified data is satisfied.