The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Oct. 17, 2000

Filed:

Mar. 11, 1999
Applicant:
Inventors:

Ronald A Barr, Mountain View, CA (US);

Bill W Crue, San Jose, CA (US);

Ming Zhao, Fremont, CA (US);

Assignee:

Read-Rite Corporation, Fremont, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G11B / ;
U.S. Cl.
CPC ...
360322 ; 360319 ; 360324 ; 3603242 ;
Abstract

The present invention provides a thin film magnetoresistive current perpendicular to the plane read head device and method of fabrication. The structure of the thin film head of the present invention may comprise a lower pedestal shield, a lower sensor lead, a magnetoresistive structure, an upper sensor lead, and an upper pedestal shield. The sensor leads have a portion located between the pedestal and the magnetoresistive structure, and a portion lateral to the between portion. Either or both sensor leads may have a portion projecting from the lateral portion. The projecting portions provide greater cross-section to the lateral portion of the lead to decrease lead resistance without increasing the pedestal-to-pedestal distance. The projecting portions form recessed portions in the sensor leads for seating the pedestal. The projecting portions may abut the pedestals. The upper sensor lead may also have a portion projecting downward from its lateral portion to form a recessed portion for seating the magnetoresistive structure. The magnetoresistive structure may utilize giant magnetoresistive materials, and may employ any known structure, such as multilayer, spin valve, or other known types of magnetoresistive materials and structures. The present invention provides lower resistance sensor leads without increasing the distance between shield pedestals, thus allowing for high data density while improving the magnetoresistive effect.


Find Patent Forward Citations

Loading…