The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jan. 25, 2000

Filed:

Apr. 21, 1997
Applicant:
Inventors:

Srimat T Chakradhar, North Brunswick, NJ (US);

Kwang-Ting Cheng, Santa Barbara, CA (US);

Angela Krstic, Germantown, MD (US);

Assignee:

NEC USA, Inc., Princeton, NJ (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01R / ;
U.S. Cl.
CPC ...
714724 ;
Abstract

A method to identify and test primitive faults in combinational circuits described as multi-level or two-level netlists. A primitive fault is a multiple path delay for which none of the single paths contained in the fault is robustly or non-robustly testable while the presence of the fault will degrade the circuit performance. Identification and testing of primitive faults is important for at least two reasons: (1) a large percentage of paths in production circuits remain untestable under the single-path delay fault model, (2) distributed manufacturing defects usually adversely affect more than one path and these defects can be detected only by analyzing multiple affected paths. The single-path delay faults contained in a primitive fault have to merge at some gate(s). The methodology for identifying primitive faults can quickly (1) rule out a large number of gates as possible merging points for primitive faults, and (2) reduce or prune the combination of paths that can never belong to any primitive fault. The procedure for identifying a primitive fault also produces a test for the fault. A complete algorithm is presented for identifying and testing double path delay faults. A similar procedure can be used to identify primitive faults consisting of three or more paths. Experimental results on several multi-level combinational benchmark circuits are included to demonstrate the usefulness and efficiency of the technique.


Find Patent Forward Citations

Loading…