The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 20, 1999
Filed:
Nov. 21, 1996
Min-Liang Chen, Hsinchu, TW;
Chih-Hsien Wang, Hsinchu, TW;
Chih-Hsun Chu, Hsinchu, TW;
San-Jung Chang, Hsinchu, TW;
Mosel Vitelic Inc., Hsinchu, TW;
Abstract
The present invention is related to a process for fabricating a MOS device having a short channel. The process according to the present invention includes the steps of (a) providing a semiconductor substrate and forming a gate structure on the semiconductor substrate; (b) implanting impurities of a first charge type to the semiconductor substrate with the gate structure serving as a mask to form a first source/drain region having a predetermined impurity concentration; (c) pocket-implanting impurities of a second charge type to the resulting semiconductor substrate with the gate structure serving as a mask to form a second source/drain region having a predetermined impurity concentration; and (d) forming a gate side wall on a flank of the gate structure, and implanting impurities of the first charge type to the resulting semiconductor substrate with the gate structure and the gate side wall serving as a mask to form a third source/drain region having a predetermined impurity concentration. The present invention is characterized in that no threshold voltage adjustment implantation to the semiconductor substrate is needed prior to the growth of the gate structure, and in stead, the diffusion ability of the pocket-implanted impurities in the step (c) can concurrently adjust the threshold voltage of the device.