The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 04, 1999
Filed:
Apr. 14, 1998
Yoshiyuki Shimanuki, Hiratsuka, JP;
Toshimichi Kubota, Hiratsuka, JP;
Toshirou Kotooka, Hiratsuka, JP;
Makoto Kamogawa, Hiratsuka, JP;
Komatsu Electronic Metals Co., Ltd., Kanagawa, JP;
Abstract
This invention provides a method and apparatus for fabricating semiconductor single crystals. By using the method of this invention, the temperature gradient of the single crystal being lifted can be easily controlled. The as-grown defect density can be reduced, and it is possible to manufacture high quality semiconductor single crystals with high oxidation-film breakdown strength. A shield cylinder is used for surrounding the semiconductor single crystal 7 being lifted, the shield cylinder is made to be of the telescopic type and consists of a first shield duct 4, a second shield duct 5, a third shield duct 6. A wire 8 wrapping around a wind-up reel 10 is engaged with the third shield duct 6, and the shield cylinder can be driven to extend or retract by rotating the wind-up reel 10. An ascend and descend rod 3 is connected with the first duct 4, and the shield cylinder can be driven to move upward or downward by lifting or lowering the ascend and descend rod 3. The wind-up reel 10 is driven to retract part of the shield cylinder so that the lapped portion of the shield cylinder keeps a predetermined portion of the semiconductor single crystal 7 being lifted warm, and the temperature gradient of the semiconductor single crystal 7 can be reduced when it passes through the zone whose temperature is within a range from 1000.degree. C. to 1200.degree. C.