The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 06, 1998
Filed:
Apr. 03, 1997
Tadao Ishibashi, Kanagawaken, JP;
Tomofumi Furuta, Tokyo, JP;
Naofumi Shimizu, Isehara, JP;
Koichi Nagata, Yamato, JP;
Yutaka Matsuoka, Atsugi, JP;
Masaaki Tomizawa, Isehara, JP;
Nippon Telegraph and Telephone Corp., Tokyo, JP;
Abstract
A pin photodiode having a structure capable improving the frequency response and the saturation output while maintaining the effective internal quantum efficiency and CR time constant. A pin photodiode is formed by: a first semiconductor layer in a first conduction type; a second semiconductor layer in a second conduction type; a third semiconductor layer sandwiched between the first and second semiconductor layers, having a doping concentration lower than those of the first and second semiconductor layers; a fourth semiconductor layer in the first conduction type, provided at one side of the first semiconductor layer opposite to a side at which the third semiconductor layer is provided; and a cathode electrode and an anode electrode connected directly or indirectly to the second semiconductor layer and the fourth semiconductor layer, respectively. The first semiconductor layer has a bandgap energy by which a charge neutrality condition is maintained in at least a part of the first semiconductor layer and the first semiconductor layer is made to function as a light absorption layer, while the second and third semiconductor layers have bandgap energies by which the second and third semiconductor layers are made not to function as a light absorption layer, and the fourth semiconductor layer has a bandgap energy greater than that of the first semiconductor layer.