The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 05, 1998
Filed:
Jul. 31, 1996
Takeshi Kitatani, Hitachi, JP;
Yoshiaki Yazawa, Hitachioota, JP;
Junko Minemura, Kodaira, JP;
Akira Sato, Takahagi, JP;
Terunori Warabisako, Tokyo, JP;
Hitachi, Ltd., Tokyo, JP;
Abstract
A light receiving element having excellent characteristics, including high sensitivity and high response speed, can be achieved by a light element comprising unit structures each having two pn junction semiconductor layers, and a lightly doped semiconductor layer having low impurity density, lower than those of the p-type regions and the n-type regions of the two pn junction semiconductor layers, and which is sandwiched between the two pn junction semiconductor layers. The p-type regions of the pn junction semiconductor layers are disposed opposite to each other on opposite sides of the lightly doped semiconductor layer, respectively, and the n-type regions of the pn junction semiconductor layers are disposed opposite to each other on the opposite sides of the lightly doped semiconductor layer, respectively. In a method of fabricating such a light receiving element, using controlled shutters or an ion beam apparatus, the layers are formed of optimum semiconductors, in an optimum thickness and in optimum impurity densities. In this structure, photogenerated carriers move mainly through the lightly doped semiconductor layer. Therefore, the lifetime of the carriers is increased, and the drift mobility of the carriers is enhanced, so that the light receiving element is able to function with a high sensitivity at a high response speed.