The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 18, 1997

Filed:

Sep. 26, 1988
Applicant:
Inventors:

Katuhiko Honma, Akashi, JP;

Tsuneo Tatsuno, Kobe, JP;

Hiroshi Okada, Amagasaki, JP;

Masato Moritoki, Miki, JP;

Takao Fujikawa, Kobe, JP;

Assignee:
Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C04B / ;
U.S. Cl.
CPC ...
264 65 ; 264 62 ; 264 85 ; 264570 ; 264325 ;
Abstract

The specification describes a method for producing high density sintered silicon nitride(Si.sub.3 N.sub.4) having a relative density of at least 98%. In a first step, silicon nitride powder is compacted into a desired shape. It is then presintered in a second step, generally, under normal pressure to obtain a presintered body having a relative density of at least 92%. In a third step, the presintered body is subjected to a hot isostatic pressing(HIP) in an inert gas atmosphere of 1500-2100.degree. C. and of nitrogen gas partial pressure of at least 500 atm. Since the presintering does not require any capsule, it is possible to produce high density sintered Si.sub.3 N.sub.4 of complex configurations. As a sintering aid, Y.sub.2 O.sub.3 -Al.sub.2 O.sub.3 -MgO system sintering aid is particularly effective. To improve the strength of sintered Si.sub.3 N.sub.4, it is effective to add a heat treatment step after the HIP and maintain the temperature of the sintered Si.sub.3 N.sub.4 above 500.degree. C. for a while. Between the second and third steps, the temperature of the presintered body is preferably maintained above 500.degree. C. These temperature controls are effective not only to improve the strength of sintered Si.sub.3 N.sub.4 but also to save the thermal energy and to shorten the production cycle.


Find Patent Forward Citations

Loading…