The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 19, 1996
Filed:
Mar. 07, 1994
James D Litton, Los Angeles County, CA (US);
Graham Russell, Los Angeles County, CA (US);
Richard K Woo, Orange County, CA (US);
Leica, Inc., Buffalo, NY (US);
Abstract
A Global Positioning System (GPS) commercial receiver including a digital processor disposed to utilize the energy of both the L1 and L2 GPS satellite signals in order to derive an estimate of an unknown security code used to modulate the signals. In processing the signal energy from the received L1 and L2 signals in accordance with statistical Maximum A Posteriori (MAP) estimation theory, the received L1 signal is correlated with a locally generated replica of the P-code, and passed through a bandpass filter having a bandwidth approximating the bandwidth of the unknown modulation code. The received L2 signal is similarly correlated and filtered, and the decorrelated signals are then latched in such a way as to account for the differential ionospheric refraction of the L1 and L2 signals. The bandlimited L2 signal is used to produce quadrature error signals related to phase difference between the L2 signal and a locally generated L2 replica. The error signals are integrated over an integration period which approximates the bit period of the unknown code, with the resulting estimates of the bits of the unknown code being combined with corresponding L1 channel code bit estimates weighted by a factor proportional to the difference in received L1 and L2 signal power. The hyperbolic tangent of each combined W-code bit estimate is then computed, with the result being multiplied by one of the integrated error signals. The resulting control voltage is then used to adjust the locally generated L2 carrier phase.