The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 02, 1996
Filed:
Dec. 06, 1993
Chan-Yong Park, Daejeon, KR;
Ji-Beom Yoo, Daejeon, KR;
Kyung-Hyun Park, Daejeon, KR;
Hong-Man Kim, Daejeon, KR;
Dong-Hoon Jang, Daejeon, KR;
Jung-Kee Lee, Daejeon, KR;
Electronics and Telecommunications Research Institute, Daejeon-shi, KR;
Korea Telecommunication Authority, Seoul, KR;
Abstract
A method for manufacturing the semiconductor laser device comprising the steps of sequentially forming an active layer, a photo-waveguide layer, a cladding layer, and an ohmic contact layer on an upper surface of an InP substrate; forming a first patterned dielectric layer on the ohmic contact layer; depositing a patterned photoresist on the ohmic contact layer to define a p- electrode stripe layer; forming the p- electrode stripe layer only on a part of the ohmic contact layer; performing an annealing process; etching back the layers until the photo-waveguide layer is exposed, using the first patterned dielectric layer and the p- electrode stripe layer as an etching mask, to form a ridge; depositing a second dielectric layer on the substrate formed thus; selectively removing the second dielectric layer to form a contact hole on the p- electrode stripe layer; coating a bonding pad metal layer on the second dielectric layer and in the contact hole; and coating an n- electrode metal layer on bottom surface of the substrate. Since ohmic contact resistance is lowered, thermal generation and threshold current of oscillation are decreased. As a result, operating characteristics of the laser device can be largely improved.