The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 16, 1996
Filed:
Dec. 13, 1994
Byung-Ryul Ryum, Daejeon, KR;
Tae-Hyeon Han, Daejeon, KR;
Soo-Min Lee, Daejeon, KR;
Deok-Ho Cho, Daejeon, KR;
Seong-Hearn Lee, Daejeon, KR;
Jin-Young Kang, Daejeon, KR;
Electronics & Telecommunications Research Institute, Daejeon, KR;
Korea Telecommunication Authority, Seoul, KR;
Abstract
Disclosed is a fabrication of a bipolar transistor with a super self-aligned vertical structure in which emitter, base and collector are vertically self-aligned, the fabrication method comprising the steps of forming a conductive buried collector region in a silicon substrate by using ion-implantation of an impurity and thermal-annealing; sequentially forming several layers; selectively removing the nitride and polysilicon layers to form a pattern; sequentially forming a silicon oxide layer, a third layer and a silicon oxide layer thereon; forming a patterned photoresist layer thereon to define active and inactive regions and removing several layers on the active region to form an opening; forming a side wall on both sides of the opening; forming a collector on a surface portion of the buried collector region up to a lower surface of the polysilicon layer; removing the side wall and the third nitride layer to expose a side surface of the second polysilicon layer; selectively forming a base on an upper surface of the collector including a side surface of the polysilicon layer; forming side wall oxide layer on both sides of the base and the silicon oxide to define an emitter region; forming an emitter on the base; and forming electrodes thereon. In the method, an active region is defined by a photolithography, and thereby a trench isolation acting as factors of lowering in integration and device-performance can be omitted in the method. As a result, fabrication sequence can be simplified and integration can be improved.