The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 05, 1995

Filed:

Oct. 11, 1994
Applicant:
Inventor:

Tohru Ogawa, Kanagawa, JP;

Assignee:

Sony Corporation, Tokyo, JP;

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G03C / ;
U.S. Cl.
CPC ...
430325 ; 430159 ; 430166 ; 430326 ; 430510 ; 430512 ; 430523 ; 430524 ; 430525 ; 430526 ; 430272 ; 430950 ;
Abstract

A method of determining an optimum condition of an anti-reflective layer upon forming a resist pattern by exposure with a monochromatic light, a method of forming the anti-reflective layer therewith and a method of forming a resist pattern using a novel anti-reflective layer obtained therewith. The optimum condition of the anti-reflective layer is determined and the anti-reflective layer is formed by the methods described below. Further, an optimal anti-reflective layer is obtained by the method which is used for forming the resist pattern. The method comprises (I) forming an equi-contour line for the amount of absorbed light regarding a photoresist of an optional film thickness using the optical condition of the anti-reflective layer as a parameter, (II) conducting the same procedure as in (I) above for a plurality of resist film thicknesses, (III) finding a common region for the amount of absorbed light with respect to each of the traces obtained, thereby determining the optical condition for the anti-reflective layer, (IV) applying same procedures as described above while changing the condition of the anti-reflective layer, thereby determining the optical condition for the anti-reflective layer, and (V) determining the optimum optical condition such as the kind and the thickness of the anti-reflective layer under a certain condition of the anti-reflective layer.


Find Patent Forward Citations

Loading…