The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 25, 1995
Filed:
Jun. 08, 1993
Niro Odani, Ibaraki, JP;
Hironori Yoshimura, Ibaraki, JP;
Akira Osada, Ibaraki, JP;
Tetsuya Tanaka, Ibaraki, JP;
Seiichirou Nakamura, Ibaraki, JP;
Abstract
The present invention discloses a cermet cutting tool, and process for producing the same, comprising a substrate formed from titanium carbo-nitride based cermet, and a hard coating layer of average thickness 0.5.about.20 .mu.m, formed onto the surface of the cermet substrate comprising a lower layer formed from at least one layer of a compound selected from the group consisting of titanium carbide (TiC), titanium nitride (TIN), titanium carbo-nitride (TiCN), titanium carbo-oxide (TiCO) and titanium carbo-oxi-nitride (TiCNO), and aluminum oxide (Al.sub.2 O.sub.3). Additionally, at least one of the layers comprising the hard coating layer is a titanium carbo-nitride layer, and at least one layer of this titanium carbo-nitride layer comprises a longitudinal growth crystal structure. The process for producing a cermet cutting tool according to the present invention comprises a step for preparing a substrate from titanium carbo-nitride based cermet, and a step for forming a hard coating layer onto the surface of said substrate using a chemical vapor deposition method wherein in at least one part of this step, chemical vapor deposition is performed using a reaction gas composed of 1.about.5% of TiCl.sub.4, 0.1.about.1% of CH.sub.3 CN, 0.about.25% of N.sub.2 with the remaining portion being composed of H.sub.2, under a reaction temperature of 800.degree..about.900.degree. C. and a reaction pressure of 30.about.200 Torr.