The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 31, 1992
Filed:
Nov. 27, 1990
Manzur Gill, Rosharon, TX (US);
Sebastiano D'Arrigo, Houston, TX (US);
Texas Instruments Incorporated, Dallas, TX (US);
Abstract
First and second EEPROM cells have first and second source regions (28a, 28b) formed in a semiconductor layer (12) to be of a second conductivity type opposite the first conductivity type of the layer and to be spaced apart from each other. A field plate conductor (100) is insulatively disposed adjacent, and defines, an inversion region (102), and further is laterally spaced between the first and second source regions (28a, 28b). The inversion region (102) is inverted from the first conductivity type to the second conductivity type upon application of a predetermined voltage to the field plate conductor (100). First and second channel regions (48a, 48b) are defined between the respective source regions (28a28b) and the inversion region (102) and each include floating gate and control gate subchannel regions (60a, 62a, 62b, 60b). First and second floating gate conductors (40a, 40b) are insulatively disposed adjacent respective floating gate subchannel regions (60a , 60b) to control their conductance. A control gate conductor is insulatively disposed adjacent the control gate subchannel regions (62a, 62b) to control their conductance. In another embodiment, the field plate conductor (100) is replaced with a pair of field plate conductors (42a, 42b) that control the conductance of respective subchannel regions (64a, 64b). The field plate conductors (42a, 42b) act to self-align a diffused drain region (46) that replaces the inversion region (102).