The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 24, 1991
Filed:
Apr. 06, 1990
Ahmed M Said, Beaverton, OR (US);
Tektronix, Inc., Beaverton, OR (US);
Abstract
A method and apparatus are disclosed, that is suitable for digital or analog spectrum analyzers, for accurately and rapidly ascertaining the frequency of a spectral line by determining its location from the response of two Gaussian shaped filters whose center frequencies bracket the frequency of the spectral line. The difference is taken between the amplitudes in decibels of the responses of the two Gaussian filters to the spectral line input signal. The frequency of the spectral line is then found from the linear relationship fx=delta-log-ampl.*c1+c2, where c1 is proportional to the square of the standard deviation of the Gaussian filters and inversely proportional to the difference between the center frequencies, f1 and f2, of the Gaussian filters times the logarithm of e, and where c2 is the midpoint between the center frequencies, f1 and f2, of the Gaussian filters, G1 and G2. Alternatively, a sweeping local oscillator output can be mixed with the signal containing the spectral line of unknown frequency and the resulting signal applied to one Gaussian filter at two different times to produce equivalent results. In this case, c1 is proportional to the square of the standard deviation of the Gaussian filter and inversely proportional to the difference between the local oscillator frequencies, f,LO+1 and f,LO+2, at times t1 and t2, times the logarithm of e, and c2 is the average of the local oscillator frequencies, f,LO+1 and f,LO+2, plus f, the center frequency of the Gaussian filter.