The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 19, 1989
Filed:
Jan. 13, 1987
Masahiro Kanai, Tokyo, JP;
Masaaki Hirooka, Toride, JP;
Jun-Ichi Hanna, Yokohama, JP;
Isamu Shimizu, Yokohama, JP;
Canon Kabushiki Kaisha, Tokyo, JP;
Abstract
A method for forming a thin film multi-layer structure member having at least one of at least one kind of a semiconductor thin film controlled in valence electron and a semiconductor thin film regulated in band gap comprises the step of forming at least one layer of the semiconductor thin films on a substrate by energizing a heat-generating member constituted of either a single substance or an alloy of a transition metal element having the catalystic effect provided in a film forming space to effect heat generation, bringing a starting material (A) for deposited film formation containing at least one element of halogens and hydrogen in the molecule and a compound (B) containing an element which becomes at least one of the valence electron controller and the band gap regulator into contact with the heat-generating member under heat generating state to cause a thermal dissociation reaction to effect activation, thereby forming a precursor (X) which becomes the starting material for deposited film formation and using the precursor (X) as the feeding source for the constituent element of the thin film, and the step of forming at least one layer of other thin films by introducing a gaseous starting material (a) for deposited film formation and a gaseous halogenic oxidizing agent having the property of oxidation action for the starting material (a) into a reaction space to effect contact therebetween to thereby form chemically a plural number of precursors including precursors under excited state and using at least one precursor of the precursors as the feeding source for the constituent element of the deposited film.