The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 23, 1989

Filed:

Jun. 29, 1988
Applicant:
Inventor:

Toshio Fujii, Atsugi, JP;

Assignee:

Fujitsu Limited, Kawasaki, JP;

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ; H01L / ;
U.S. Cl.
CPC ...
437107 ; 148D / ; 148D / ; 148D / ; 148D / ; 156612 ; 437110 ; 437111 ; 437126 ; 437133 ;
Abstract

Group III-V multi-alloy semiconductors, such as ternary, quaternary, and pentanary semiconductors, grown on a binary group III-V compound semiconductor substrate, are used as an active layer in opto-devices, high electron mobility transistors, etc. A method of growing multilayers, lattice-matched to the binary substrate and having specific energy band gaps, includes a molecular beam epitaxy (MBE) process. The present invention includes growing a quaternary or pentanary semiconductor layer using a minimum number of effusion cells and eliminating readjustment of molecular beam intensities from one layer to another layer during a series of epitaxial growth steps. As an example of quaternary growth, four effusion cells are utilized and two combinations of three effusion cells are alternately operated, one including an Al effusion cell and the other including a Ga effusion cell. Each of the three effusion cells is capable of growing a ternary semiconductor lattice-matched to the substrate. Two groups of pulsed molecular beams, each pulse having a width corresponding to a growth time less than that required to grow three atomic layers, grow a quaternary alloy semiconductor also lattice-matched to the substrate. Similarly, a method of growing a pentanary alloy semiconductor utilizing five effusion cells in a MBE system can be employed.


Find Patent Forward Citations

Loading…