The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 20, 1988
Filed:
Mar. 05, 1985
James W Blackburn, Knoxville, TN (US);
Gary S Sayler, Blaine, TN (US);
International Technology Corporation, Martinez, CA (US);
University of Tennessee Research Corporation, Knoxville, TN (US);
Abstract
A method is disclosed for the monitoring and control of a microbial population in a biotechnological system. The method involves the identification of at least one critical subpopulation and determining the optimal level for said subpopulation. A controlled variable is determined which can be adjusted to alter the level of the subpopulation. The method employs nucleic acid hybridization in the microbial population. This involves the preparation of a labelled probe from nucleic acid having a nucleotide sequence substantially complementary to a nucleotide sequence in the nucleic acid in the subpopulation. A representative sample of the microbial population is obtained and treated to free nucleic acids and to denature double-stranded nucleic acids. The resulting sample nucleic acids are contacted with the labelled probe under appropriate conditions to form duplexes. The labelled probe in the duplex is monitored to determine the amount of duplexes and the level of the subpopulation is calculated from the determined duplexes. The controlled variable is adjusted based on the calculated level of the subpopulation to bring the level toward the optimal level. The method is used to monitor and control the microbial population without reliance upon the phenotypical expression of the genetic information of the organisms.